Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers

نویسندگان

  • Peter Tseng
  • Ivan Pushkarsky
  • Dino Di Carlo
چکیده

Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sacrificial adhesion promotion layers for copper metallization of device structures.

The adhesion of copper films to adjacent device layers including TiN, Ta, and TaN diffusion barriers is a crucial reliability issue for integrated circuits. We report that ultrathin layers of poly(acrylic acid) (PAA) prepared on barrier surfaces or on the native oxide of Si wafers dramatically increase the interfacial adhesion of Cu films deposited by the H2 assisted reduction of bis(2,2,7-trim...

متن کامل

Super Thin Flip Chip Assemblies on Flex Substrates - Adhesive Bonding and Soldering Technology – Reliability Investigations and Applications

Thinned silicon chips with very thin bumps (5-7μm) mounted on flexible substrates open up new dimensions in packaging technologies. The use of flexible substrates enables a large variety of geometric possibilities including folding and bending. Conventional flip chip technology using pick&place and standard reflow processes is not suitable for the assembly of ultra thin components. This is base...

متن کامل

Ultra Wideband Fabric-Based Slot Antenna on Human Body for Medical Application

In this paper a new UWB textile slot antenna has been designed with high precision. This work aimed to makecloser steps towards real wearability by investigating the possibilities of designing wearable UWB antenna wheretextile materials are used for the substrate as well as the conducting parts of the designed antenna. The antenna iscomposed of three textile layers: the top and bottom are condu...

متن کامل

Optical properties of silicon nano layers by using Kramers- Kronig method

Silicon thin layers are deposited on glass substrates with the thickness of 103 nm, 147 nm and 197 nm. The layers are produced with electron gun evaporation method under ultra-high vacuum condition. The optical Reectance and the Transmittance of produced layers were measured by using spectrophotometer. The optical functions such as, real and imaginary part of refractive index, real and imaginar...

متن کامل

Real-time and in-line Optical monitoring of Functional Nano-Layer Deposition on Flexible Polymeric Substrates

The roll-to-roll (r2r) deposition of functional nano-layers onto flexible polymeric substrates leads to the large scale production of multifunctional materials systems. These include the encapsulation (ultra barrier) layers, and Transparent Conductive Oxide (TCO) electrodes, for the low cost production of Flexible Electronic Devices (FEDs), such as flexible OLEDs and OPVs. The performance, effi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014